Package: RRBoost 0.2
Xiaomeng Ju
RRBoost: A Robust Boosting Algorithm
An implementation of robust boosting algorithms for regression in R. This includes the RRBoost method proposed in the paper "Robust Boosting for Regression Problems" (Ju X and Salibian-Barrera M. 2020) <doi:10.1016/j.csda.2020.107065> (to appear in Computational Statistics and Data Science). It also implements previously proposed boosting algorithms in the simulation section of the paper: L2Boost, LADBoost, MBoost (Friedman, J. H. (2001) <10.1214/aos/1013203451>) and Robloss (Lutz et al. (2008) <10.1016/j.csda.2007.11.006>).
Authors:
RRBoost_0.2.tar.gz
RRBoost_0.2.zip(r-4.5)RRBoost_0.2.zip(r-4.4)RRBoost_0.2.zip(r-4.3)
RRBoost_0.2.tgz(r-4.4-any)RRBoost_0.2.tgz(r-4.3-any)
RRBoost_0.2.tar.gz(r-4.5-noble)RRBoost_0.2.tar.gz(r-4.4-noble)
RRBoost_0.2.tgz(r-4.4-emscripten)RRBoost_0.2.tgz(r-4.3-emscripten)
RRBoost.pdf |RRBoost.html✨
RRBoost/json (API)
# Install 'RRBoost' in R: |
install.packages('RRBoost', repos = c('https://xmengju.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/xmengju/rrboost/issues
- airfoil - Airfoil data
Last updated 4 days agofrom:ef15a53be8. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | OK | Nov 19 2024 |
R-4.5-linux | OK | Nov 19 2024 |
R-4.4-win | OK | Nov 19 2024 |
R-4.4-mac | OK | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:BoostBoost.controlBoost.validationcal_imp_funccal_predict
Dependencies:DEoptimRlatticemvtnormpcaPPpyinitRobStatTMrobustbaserpartrrcov
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Airfoil data | airfoil |
Robust Boosting for regression | Boost |
Tuning and control parameters for the robust boosting algorithm | Boost.control |
Robust Boosting for regression with initialization parameters chosen on a validation set | Boost.validation |
Variable importance scores for the robust boosting algorithm RRBoost | cal_imp_func |
cal_predict | cal_predict |